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Abstract 
	

All	 the	 human	 organizations	 are	 not	 governed	 by	 competition,	 power	 relationships	 and	
individual	interest.	Sometimes	well‐meaning	people	willingly	decide	to	join	their	forces	for	a	
common	project.	The	 success	of	each	participant,	musicians	of	an	orchestra,	members	of	a	
eight	rowing	boat	team,	or	of	a	danse	troupe,	is	then	integrally	determine	by	the	joint	success.	
Besides	the	individual	qualities	of	each	member,	the	common	success	critically	depends	on	the	
ability	 of	 the	 organizational	 structure	 to	 facilitate	 the	 flow	 of	 informations	 and	 orders	
between	participants,	i.e.	to	synchronize	their	individual	actions.	

Here,	 in	 the	 framework	 of	 an	 oversimplified	mathematical	modelization	 of	 the	 individual	
behavior,	 we	 investigate	 the	 synchronization	 properties	 of	 some	 typical	 hierarchical	
organizations	and	perform	the	comparison	with	existing	ones.	We	show	that	the	democratic	
network	is	the	most	stable	one.	One	of	our	most	surprising	results	concerns	the	existence	of	
evolutionary	culs‐de‐sacs,	i.e.	hierarchical	structures	that,	although	not	optimal	from	the	point	
of	 view	 synchronization,	 are	 not	 able	 to	 improve	 themselves	 under	 the	 effect	 of	 small	
perturbations.	
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1  Introduction 

Hierarchy formation as a self-organization phenomenon 

 

Hierarchical organizations are ubiquitous in animal and human societies [1, 2, 3, 4] although their 

origin is still an open issue [5]. Thanks to the pioneering works of Bonabeau [6] and the numerous 

studies that have followed in their wake [7, 8, 9, 10, 11], the nature and dynamics of the 

hierarchical pattern formation is well understood. Also it is now well established that individual 

differences between agents (like weight, size, age, talent or charisma) can not be responsible alone 

for the hierarchies observed in animal and human societies [12, 13] and that hierarchy formation 

is mainly a self-organization phenomenon due to social dynamics [14, 15, 16]. However 

understanding how hierarchical organizations spontaneously occur does not really help to 

understand why. 

 

Selfish and altruist organizations 

 

Among the recent studies investigating the mechanisms at the origin of hierarchical pattern 

formation, two diametrically opposed approaches can be identified. One method, the microscopic 

one, is concerned with selfish organizations where each agent is motivated by his own interest. 

Starting with the description of each agent’s behavior, one investigates the consequences of the 

individual strategy onto the global organization of the connection network [17, 18]. On the 

contrary the other approach assumes that all agents are full of goodwill and that they ignore their 

individual satisfaction in favor of the success of a joint project [19]. The question is then how to 

organize the agents’ relationships at a macroscopic level in order to maximize their collective 

action. Of course, such pure philanthropic organizations are clearly utopian and even volunteers 

in charitable associations, musicians in a philharmonic orchestra or members of a eight rowing 

boat team, may experience personal ambitions. However between these two extremes, selfish and 

altruist, lies the whole diversity of human organizations and the more recents publications take 

into account both aspects [20]. 
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Modelization of an altruist organization 

 

We will focus here onto the study of an idealized altruist organizations composed of almost 

identical agents. By almost identical agents, we intuitively want to exclude organizations like 

surgical intervention team where all is made to assist and facilitate a single agent’s work, the one 

of the surgeon, and also to exclude situations where the final hierarchical position of an agent 

depends on its dynamics at t = 0  (i.e. no inheritance). Mathematically it means we restrict 

ourselves to situations where the master or slave character of any pair of agents, is solely 

determined by their coupling strengths but neither by their intrinsic difference nor by their initial 

dynamics. 

As each agent does its best, our main simplifying hypothesis consists in assuming that the unique 

obstacle to the perfect functioning of the organization is a disagreement, misunderstanding or 

desynchronisation between the agents. Then a possible modeling (supplementary material A) 

consists in considering each agent as an oscillator standing on a network node, and to mimic the 

interactions between two collaborators as a coupling link between two neighboring nodes [19]. 

The coupling strength is then exactly the weight of the directed link, and can be positive or negative 

depending on whether the slave is forced to be locked in phase or in anti-phase with its master. 

Because of the recurrent nature of the dynamics of an oscillator, initial conditions play no role in 

the long time regime. Then the globally synchronized solution, where all the agents are locked in 

phase, is expected to correspond to the perfect functioning of the society. After a disturbance, the 

ability of the organization to return as soon as possible to the synchronized state is measured by 

the largest real part of the eigenvalues of the linear stability analysis. The more negative the largest 

eigenvalue real part, the smaller the resilient time (supplementary material B). Finally, the 

comparison between the various hierarchical organizations will not be based onto their ability to 

produce something or to perform a given work, but to their ability to resist to a perturbation 

(supplementary material C).  

Note that, if at first sight this deliberate choice of an over simplified modelization may seem 

surprising, especially in the field of human sciences, it is certainly not new: in case of selfish 

human society, the paradigmatic prisoner’s dilemma, simplistic to the point of being almost 
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caricatural, has nevertheless been proved to be very useful and to lead to predictions remarkably 

realistic [17,  18]. Here we just apply this over simplification approach to the case of altruist human 

society. 

 

Many diverse and varied oscillators have been considered in the literature, even chaotic ones. 

Because we are interesting in exact analytic results, we will restrict ourselves to the Kuramoto’s 

ones [21], either because they are just the simplest linear oscillator one can imagine or because 

they are considered, since a very long time, as a simple paradigm for synchronization phenomena 

[19]. They are described as  

  ijji
j

iit sinA   =  (1) 

where i  is the phase of oscillator i , i  its natural frequency and jiA  stands for amplitude of the 

force exerted by j  on i . As we are interesting in maximizing the stability through an optimization 

of the configuration network and not through an increase of the average coupling strength, we will 

require the total mass of the links to be constant, and without loss of generality, to be equal to unity  

 1==)( 2
,

,
ij

ij

AAmass   (2) 

The existence of such a physical upper limit for the coupling strength is not surprising. It is both a 

mathematical necessity to avoid divergences in the optimization process, but also a physiological 

reality for the creation and maintenance of a connection costs time and energy. Now other 

definitions of )(Amass  could have been possible, but the one we selected will turn out to strongly 

simplify our computations [22].  

 

Two agents 

The illustrative case of 2 agents is now studying in order to clarify the notations and the simplifying 

assumptions. The dynamic is expressed as  

    211222122111 ==   sinAsinA tt  (3) 

with 1=2
21

2
12 AA  . Looking for the synchronized solution as  

 2211 =)(=)(   tttt  (4) 
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we end up with  

ߗ          ൌ ஺భమ
஺భమା஺మభ

	߱ଵ ൅
஺మభ

஺భమା஺మభ
	߱ଶ  and   

2112

12
12 =

AA
sin





  (5) 

 

 

 

Figure 1: Plot of the linear stability eigenvalue 2  versus 12A  and 21A . The blue 
(red) points correspond to an unstable (stable) synchronized solution. The 
discontinuities near the 0=  plane correspond to values of the coupling strengths 
( 2112, AA ) for which the synchronized solution does not exist. P  stands for the most 
stable synchronized solution. 

 

Several remarks are in order:  

1. The limiting case 12A = 0 , 21A  0 and 2= (resp. 21A = 0 , 12A  0  and 1= ) corresponds 

to the situation where the dynamics of the second oscillator (Ɵଶ) can’t be influenced by the first 
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one (Ɵଵ) since there is no flux of information from  (Ɵଶ) toward (Ɵଵ). On the contrary, as A21 

0 , the dynamics (Ɵଵ) is sensitive to those of (Ɵଶ). In such a situation, (Ɵଵ) is a pure slave and  (Ɵଶ) 

a pure master. Between these two extremes, there exist a continuous range of behaviors where the 

agents mutually influence each other. 

2. The existence of a synchronized solution requires || 12    <  || 2112 AA  , i.e. a high enough 

coupling strength ( || 2112 AA  ) to compensate the individual intrinsic differences ( || 12   ). As 

intended by our modelization, the sign of 12    plays no role which is the proof of the absence 

of an intrinsic predisposition to a slave or master behavior. 

3. The existence of the synchronized solution does not necessary imply its stability with respect to 

small perturbations.  

 

To investigate the linear stability of the synchronized solution, we slightly perturb it  

 )(=)(= 222111 tttt    (6) 

where 1<< . At first order 1 , we get  

    2

2

1

1212

2121
12

2

1 = 







O
AA

AA
cos

M

t 





























  

 (7) 

The eigenvalues of M  are  

  21121221 )(=0= AAcos    (8) 

The vanishing eigenvalue ( 1 ) is not relevant since it is associated with the continuous phase 

symmetry (   1,21,2 ). The second eigenvalue 2  is real and is sign controls the stability of 

the synchronized solution (fig.1). Among the various possible coupling strengths ( 2112, AA ) 

corresponding to a stable synchronized solution, there is one which is more resistant than the other. 

It correspond to 21== 1212 AA  (point P  in fig.1). In this configuration, the two agents are not 

only perfectly synchronized, but also the time need to recover a synchronized state after a 

perturbation (the resilient time) is the smallest possible one. 
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Hierarchical organization as a cultural product 

 

Knowledge of hierarchical organizations viable and proven belongs to our culture and as such, can 

be learned and transmitted. The most stable organizations, i.e. those which have proved more 

resistant to disturbance and survived the longest, will naturally be the most imitated by later 

generations. Also from one generation to another, small modifications in the hierarchical 

organizations that spontaneously occur, can be perpetuated when they lead to an obvious 

improvement of the group functioning. Hence natural selection is at work for hierarchical 

organizations and provides a slow variational dynamics where the fitness is the resilient time of 

the synchronized solution. For example, in the illustrative framework of the two agents case, fig.1 

tell us that there are no topological obstacle for small perturbations of the coupling strengths to 

continuously drive the P  configuration up to the optimal P  one. 

 

Objectives 

 

In the mathematical framework hence defined (i.e. non identical Kuramoto’s oscillators, constant 

mass of the adjacency matrix and evolutionary dynamics), we are going to analytically prove the 

existence of cul-de-sacs where the natural selection is blocked. In these kind of configurations, 

any  generic small perturbations of the connection network can be shown to drive the organization 

in a less stable regime. The possible small perturbations which may drive the organization toward 

a more stable state are so highly improbable that only strong perturbations (i.e a revolution) can 

make things evolve. Once the existence of cul-de-sacs proved, then one is naturally confronted 

with the question of the existence and nature of the optimal configuration, the one which would 

maximize the linear stability. In the case of identical Kuramoto’s oscillator, we analytically show 

that the democratic configuration, where each agent is connected to all the others with the same 

positive strength is the most stable. When dealing with slightly non identical oscillators, a 

perturbative computation shows that the optimal configuration has almost the same linear stability 

as the homogeneous case, but generically displayed negative interactions [23]. 

 



MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: 
AN INTERNATIONAL JOURNAL 

VOLUME 9 NO. 1                                           PAGE 8 OF 24                                                APRIL 2016 
 

GIL:   BEST HIERARCHICAL ORGANIZATIONS 
WWW.MATHEMATICALANTHROPOLOGY.ORG  

 
 

2  Evolutionary culs-de-sacs 

Sensitive and nonsensitive networks 

 

Recently it has been reported that networks with the same number of nodes, same number of links 

(which implies same mass), and identical eigenvalues of the coupling matrix can exhibit 

fundamentally different approaches to synchronization depending on the degeneracy of associated 

eigenvectors [24, 25]. In contrast to sensitive networks (degenerated), nonsensitive networks (not 

degenerated) are predicted and experimentally observed to be more robust against parameter 

perturbations, what is called structural stability in dynamical system theory. We now re-investigate 

this aspect in the framework of Kuramoto’s oscillators, but with an evolutionary point of view. 

 

The synchronized solution of (1) is expressed as  

  ijji
j

iii sinAtt   ==)(  (9) 

Performing a linear stability analysis iii t  =  where  < < 1, we are left with  

   ijijji
j

it cosA   =  (10) 

 

Fig.2 deals with N = 6  identical Kuramoto’s oscillators, with 5 links (for the sake of clarity, their 

mass has not been normalized and is then equal to 5). It displays 5 configurations with exactly the 

same spectrum, i.e they have the same set of linear eigenvalues. They are said to be iso-spectral. 

In itself, this observation is not exceptional since it has been shown long time ago by A. Schwenk 

that "Almost all trees are co-spectral" [26]. From the point of view of the dynamical stability alone, 

all these fives configurations converge exponentially toward the synchronized solution as te

)(tPm  where m , the order of the polynomial mP , is the degeneracy of the jordan block. 
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Figure  2: Five graph configurations with 6 nodes and 5 links are considered. For each 
graph, the top plot displays the topology of the link, while the bottom correspond to the 
jordan form of the Laplacian matrix. All the configurations are iso-spectral and only 
differ by the number of 1 in the first sub-diagonal of their jordan matrix. 

   

In order to investigate the structural stability, the configuration networks of fig.(2) are now slightly 

perturbed  

  2,,
,

2
,

,
,,, = ijij

ij
ij

ij
ijijij pAApAA     (11) 

and iip , = 0 . Simple analytical computations of the linear stability eigenvalues lead then to the 

following Taylor expansions, in which 5P  is a generic five degree polynomial in 1 : 
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



 (12) 

Highly non-monotonic, cusp-like dependence of the stability on the number of nodes and 

links of the network 

 

Previous equations (12) have 2 very deep consequences, one has already been predicted [23, 24], 

the other is still unknown. First, the perturbed eigenvalues are continuous function of  . Therefore 

in the regime of parameters where our perturbative analysis is valid ( 1<< ), the real part of   

will never change its sign. However, although continuous, the derivative of the eigenvalues with 

respect to   diverge to infinity when   goes to zero. This means an infinite susceptibility! It is 

the reason why the configurations in fig.2 (arranged in order of decreasing susceptibility), although 

iso-spectral, are so different from the point of view of structural stability, and also the reason why, 

during an optimization process, one can observed highly nonmonotonic, cusplike dependence on 

the number of nodes and links of the network [23]. 

For the sake of clarity, we will not consider all the degenerated configurations of fig.2, but focus 

only on the case (a). However our reasoning, with only straightforward modifications, is easily 

generalized to the other cases. For the configuration (a) (that we will call from now "military"), 

the first correction satisfies 5
1 = 5Q = 6,26,1 pp  . For a generic perturbation 5Q  is not vanishing, 

the degeneracy is lifted and the unperturbed eigenvalue blows up into 5 pieces uniformly 

distributed around it. Hence, whatever the sign of 5Q , there are always at least one new eigenvalues 

with a real part larger than the unperturbed one. Therefore, we obtain that under the action of any 

small generic perturbation, the military hierarchy decreases its stability! This results have been 

clearly observed experimentally with a network of 4 optoelectronic feedback loops, and the critical 
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role played by jordan bloc fully demonstrated [24]. Here the use of Kuramoto’s oscillators instead 

of optoelectronics feedback loops, by simplifying the dynamics, allows exact analytical 

computations. 

 

Consequences onto the evolutionary dynamics 

 

The second deep consequence deals with evolution. Natural selection is the key mechanism by 

which biological traits become either more or less common in a population depending on their 

reproductive process. A random perturbation is "accepted" only if it leads to an increase of the 

fitness. In 2004, E.A. Variano, J.H. McCoy and H. Lipson [27] make use of genetic algorithm to 

generate a large number of highly stable networks, hence introducing the idea that networks could 

be submitted, as animal species, to natural selection. They based their fitness function on the 

number of eigenvalues with negative real part. Here we identify the highest eigenvalue real part as 

our fitness function, i.e. as the criteria that must be optimized during the evolution. We make this 

choice because we want our evolution dynamics to be able to distinguish between networks with 

the same number of negative eigenvalues but with different eigenvalues. Then, from the point of 

view of natural selection, configuration a) in fig.2 is an evolutionary cul-de-sac: not an ecological 

niche with a local maximum fitness, but a labyrinthine dead-end whose output, which does exist, 

is particularly difficult to reach. Indeed as the network possesses N = 6  nodes, the perturbation 

jip ,  lives in a 11)( NN  (=29) dimensional space. If we want this perturbation to be able to 

drive the network into a more stable configuration, then we must at least require that 5Q  is 

vanishing. The dimension of the available remaining perturbation space is still gigantic 

21)( NN  (=28), but it is as difficult to find a 28 dimensional space inside a 29 dimensional 

one, than to find a point in a line, or a line in a plane. 

However this is not the end of the story. Let us go on and restrict ourselves to perturbations such 

that 5Q = 0 . Then simple analytical manipulation leads to  
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 (13) 

and then the same reasoning as before holds: as soon as 5  is non vanishing, the unperturbed 

eigenvalue blows up in 4 pieces uniformly distributed around it, such that the linear stability is 

thereby necessarily reduced. This stability decreasing occurs for any generic perturbation in the 

already reduced 0=5Q  perturbation space. At this stage, a suitable perturbation, i.e. that could be 

able to increase the linear stability, has to be chosen in 27 dimensional space with 0=5Q  and 

0=5 , and is therefore as probable as to find a point in a plane by chance. The same reasoning 

can be continued until all the degeneracy is lifted. We then obtain that the larger the degeneracy 

the deeper the cul-de-sac! Hence configurations in fig.2 are arranged in descending order for time 

needed for evolution to improve their stability. The fact that many human associations are 

organized according to the configurations (a,b,c or d) is usually explained as a consequence of the 

individual node differences. We just have proved that it could be also the case because of the cul-

de-sac effect which blocks their evolution. Finally note that, among the configurations displayed 

in fig.2, only the "philharmonic orchestra" organization (e) is not a cul-de-sac. It is therefore the 

most adaptive, the one which is the most susceptible to improve itself with random modifications 

of the network topology. 

 

3  Optimal hierarchical organization 

Of course, the next question is: what are the global minima, the genuine fix evolutionary points? 

We first answer in the case of identical Kuramoto’s oscillators proving that the democratic network 

where each node is connected to all other with the same weight, is a global optimum, and then 

investigate the case of slightly non identical ones. 
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Identical agents 

 

The adjacency matrix of the democratic network is expressed as  ji
d

jiA ,, 1=    where  =

121))(( NN  is used for mass normalization. Because the Kuramoto’s oscillators are identical, 

the general linear stability analysis (10) can be rewritten as  

   j
d
ij

j
ij

d
ji

j
it LA    ==  (14) 

The eigenvalues of the laplacian matrix dL  are then computed through straight algebraic 

computations. Beside 0  which is always an eigenvalue because of the phase invariance symmetry, 

there are 1)( N  eigenvalues all non degenerate and equal to N , such that the trace of dL  is 

NN 1)(  . Now let us consider a new network defined by its adjacency matrix 'A = dA + P , 

where P  be a square matrix ( P  is not necessary small!), with a vanishing diagonal. Because of 

the mass conservation )(=)(=)( ' dd AmassPAmassAmass  , we have  

 0<
2

1
= 2

,
,

,
,

ij
ij

ij
ij

PP  


 (15) 

Eq.(14) is now expressed as  

    jij
j

ijji
d
ji

j
it LPA  '==    (16) 

The trace of 'L  satisfies  

 )(>)(=)( ,
,

' d
ji

ji

d LTrPLTrLTr   (17) 

which necessarily implies that at least one eigenvalue has a real part higher than N  and proves 

that the democratic configuration is a global optimum. Note that the constraint on the mass is a 

key point of the proof (15) and an a posteriori justification of our definition of the )(Amass . 
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Slightly non identical agents 

 

Now we investigate the case of slightly non identical Kuramoto’s oscillators which are described 

by Eq.(9) for the synchronized solution ( i ) and by (10) for its linear stability ( i ). Rewriting this 

later as  

    ijjijiijji
j

it cosAAA    =with= ''  (18) 

highlights the strong formally analogy with eq.(14). The only difference lies in the conservation 

of mass. Here it is 2

, jiij
A = 1 which is conserved and not '2

, jiij
A . However  

 
  

)(1

1

2

22

,

'2

,





O

sinAA ijji
ij

ji
ij



 
 (19) 

where   stands for the standard deviation of the i  distribution. Therefore, in case of slightly 

non identical oscillators, the optimization process is expected to lead to almost identical '
jiA  

weights and to eigenvalues close to N . A side result is that the common pulsation   of the 

optimal synchronized solution is very close to the i  average  

  
  

0

,

'

,

1
=

;




  

 

ijtan

ij

ijji
ij

i
i

tanA
N



  (20) 

To confirm these predictions, numerical simulations have been performed. We proceeded in the 

following way. First, the pulsations i  were uniformly randomly chosen in the range 

],1[1  dd  , 1<<d . Then, the elements of the initial adjacency matrix were uniformly 

randomly chosen in the range 1]1,[   and next multiplied by a normalization factor to set the 

mass to unity. Finally random perturbations of the network (that conserve the mass and with an 

amplitude that decreases with time) were repeatedly generated and the new configurations were 

retained only if the linear stability is increased. Along this Monte-Carlo dynamics, we recorded 

the real part of the less stable eigenvalue ( )(( eSup  ) together with the variance of the '
jiA  (V =
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< '2
jiA >  < '

jiA 2> ). In fig.3, the numerical trajectories in the ( )(( eSup  ,V ) plane, 

corresponding to several d  values, are in very good agreement with our predictions: the variance 

decreases toward zero and the real part of the less stable eigenvalue does converge toward a value 

very close to those obtained in the case of identical oscillators (marked as d  in Fig.3). Also, 

beside the existence of negative optimal interactions [23], we also observe a strong tightening of 

the optimized final distribution of the opt
jiA  around two narrow peaks of opposite sign (Fig.4a). 

Separating the positive weights from the negative ones   jiji
opt
ji AAA =  ( 

jiA > 0  and 
jiA < 0 ) as 

in fig.4b and c, we obtain a splitting of the optimized configuration into two networks: the one 

with positive weights is made of two disconnected subnetworks, while the other, with negative 

weights is bipartite (the two parts corresponding to the two previous disconnected subnetworks). 

It means that the oscillators which belong to the left graph in fig.(4.b) have almost all the same 

phase L , the oscillators of the right graph share the almost same phase R , and that there is a 

phase opposition between the two disconnectd graphs, i.e. R  L   . 

The previous result display strong analogy with is called the hipster effect [28]. In Social science, 

economics and finance, large ensemble of interacting individuals taking their decisions either in 

accordance (mainstream) or against (hipsters) the majority, are ubiquitous. Yet, trying hard to be 

different often ends up in hipsters consistently taking the same decisions, in other words all looking 

alike. 

 

4  Conclusion 

 
In conclusion, by restricting ourselves to coupled oscillators with an extremely simple dynamic, 

we have obtain exact analytical results dealing with the optimization toward higher stability of a 

set of Kuramoto’s oscillators with respect to the topology of the connection network. Global 

optimal configurations for identical and slightly non identical oscillator’s have been identified as 

well as Cul-de-sac of the evolution. The latter are not local minima of the optimization dynamics 
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and therefore not ecological niches, but amazing configurations where the natural selection 

mechanism is statistically blocked. 

 

The analytical results are as rigorous as their interpretation in terms of human society is 

contestable, but very tempting. Even if Kuramoto’s model is long time ago considered as a simple 

paradigm for synchronization phenomena, it must be recognize that it only provides an  

 

 

Figure 3: Monte-Carlo computations of the optimized network configuration in case of 
6 nodes and adjacency matrix with unitary mass. The plot displays 4 trajectories in the 
(Sup   e , Variance  '

jiA ) plane for various i  distributions: asterics stand for i  

  ][0.95,1.05 , squares for ][0.93,1.07 , diamonds for ][0.90,1.10  and crosses for 
][0.87,1.13 . The figure on the top left corner is a high magnification of the small one 

on the bottom left. 
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Figure 4: Optimized network of 8  non identical nodes and adjacency matrix with 
unitary mass obtained through a Monte-Carlo computation. The frequencies [1,8]i  are 

equal to  .04211,1.0156,10042,1.015,0.9223,1.167,0.91840.9121,0.9  and the index i  in 

i  corresponds to their position in the list. a) is the pdf of weights of the optimized 

adjacency matrix opt
jiA , b) is the graph of the positive part of opt

jiA  (disconnected) while 

c) is associated with its negative part (bipartite). 
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oversimplified description of the individual and collective human behavior. In this context, it is 

surprising that our optimization dynamics considerations provides a believable explanation for the 

existence of human organizations which, although not optimal, persist. Works in order to 

investigate the influence of relevant individual differences onto the optimized hierarchy, are in 

progress. Kuramoto's models are suitable for this kind of study because they are easily adaptable 

to mimic human features like flexibility, tenacity or even leadership capacity. 
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SUPPLEMENTARY MATERIAL A: 

IN WHICH CASES DOES THE OSCILLATOR DESCRIPTION APPLY? 
 
It seems quite obvious that the success of a joint action requires the coordination of each involved 

agents. What is far from being straightforward is the possibility, for certain joint action, to reduce 

the description the action of each agent as a phase variable of an oscillator. We now discuss this 

point, analyze the assumptions we use and give a few examples to illustrate. 

 

a) single oscillator 

 

Whatever the joint action under consideration, there is a list of actions which can or have to be 

done by each agent, with a pointer indicating the current action in progress. In the straighforward 

example of a single dancer on a dance floor, this list consists of all the possible dancing steps. In 

this space of states, the succession of the dancing steps draws a confined trajectory. In the simplest 

cases, this trajectory is periodic (waltz, madison, twist), but quasiperiodic, chaotic and even self 

transversely crossing trajectories can be observed. 

 

We will not consider such complex trajectories and will limit ourselves to situation where the 

trajectory in the space of all possible actions of a single agent is periodic. This is a very strong 

restriction, but it does correspond to numerous situations. First to come to mind: walkers, dancers, 

rowers, protestors chanting a slogant, applause, workers in an assembly line. Musicians, at the 

level of the sequence of notes, do not follows a periodic trajectory, but they strictly respect the 

regular succession of stressed and unstressed beats, the so-called tempo or rhythm.  

 

The description of an agent's action as the phase variable of an oscillator seems less and less 

straigthforward when considering joint actions which are more and more sophisticated. Why? As 

an example consider the problem of writing a very large computer program. For each procedure 

he has to deal with, the software ingenior has to draft the specifications, define the inputs and 

outputs, make some bibliographic research and either select or invent a suitable algorithm, generate 

the computer code, compile link and debug it. He has also to coordinate his action with contributors 
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who are dealing with procedures which are either client or server. Indisputably at this level of 

description, the ordered sequence of actions is repeated identically for each new procedure. 

Nevertheless, we are very reluctant to assume a periodic trajectory because we know, by 

experience, that the execution of such a complex task can be stopped by many unpredictable 

obstacles. What may prove decisive for the project progress and success is the exceptional brilliant 

idea that may germinate (or not!) in the brain of a single contributor. By their very nature, 

outstanding contributions don't occur periodically or even regularly. Therefore in the present study, 

we limit ourselves to situations where each agent is assumed to be competent enough, full of 

goodwill, and able to come to grips with the task he was assigned to in the allotted time. We 

consider situations where nothing extraordinary is expected from any contributor, neither decision 

nor choice, but only routine and know-how built up on the repetition of the same actions. 

 

b) several oscillators 

 

Moving his legs one after the other, a single walker performs a regular and periodic sequence of 

actions. This natural rocking frequency may slightly changes from one agent to the other, 

depending on the length of his legs, his weight or his size. Therefore when a group of walkers 

work together to carry a heavy mass, they have to coordinate themself and to adapt their rocking 

frequency to a common one. They have also to lock their phase in order to prevent parasitic 

movements of the heavy mass (pitch and rolling). Despite this coordination process, the trajectory 

of each agent in the space of states, is still almost periodic and only slightly disturbed compared 

to the situation where he is alone. It is worth noting that it is not always the case. For example in 

a assembly line, some workers may decide to occupy a position rather than an other depending on 

the delay, hence switching from one trajectory to another. Here, we will not investigate such 

situations and limit ourselves to cases where the collective behavior only slightly impact the 

individual one. 
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SUPPLEMENTARY MATERIAL B: 
DYNAMICAL VERSUS STRUCTURAL STABILITY 

 
A eight rowing team is a striking example of coordinated periodic behaviors, where each rower, 

except the first one, must absolutly synchronize his movements with the others on pain of being 

hit by his oar and stopping the boat. A pertinent and usefull remark is that the desired synchronized 

state has to resist to small perturbations like a momentary lapse of attention or the crossing of the 

wake of a boat. In dynamical systems theory, this ability to withstand perturbations is called 

dynamical stability and is characterized by the exponential decay rate of the deviations with time, 

the shorter the resilient time the higher the stability. When there exist several decay rates 

(depending on the type of perturbations), the smallest and therefore most critical is the relevant 

one. 

 

Now assume that an eight rower team has been set up and successfuly tested in the sense that it is 

able to sustain a high row rate of 45 oar strokes per minute for the whole race. A new organization 

of the crew is then tested, where the first rower exchanges his place in the boat with the sixth. This 

new organization can be seen as a modification of the first one, the exchange which has been 

carried out as a perturbation, and the question of whether the new organization will be able to 

successfully sustain the same high row rate as a stability question. This type of stability is called 

structural stability and is associated with the dynamical process of improvement of the crew 

organization. Hence there exist two different characteristic time scales, a short and a long ones. 

The former is associated with the response of a given organization to a perturbation (lapse of 

attention, wake of a boat), the latter with the slow evolution of the crew organization to improve 

its performance. 
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SUPPLEMENTARY MATERIAL C: 
IMPROVEMENT OF THE JOINT ACTION PERFORMANCE 

 

Consider again the carrying of a heavy mass by a group of people. Even for this simple joint action, 

the improvement of the crew's performance may be understood in several distinct ways, most often 

conflicting: increase of the maximum mass which can be carried, increase of the travelled distance, 

decrease of the number of carriers, of their fatigue, or of the risk of an accident. Hence, not only 

the optimum network of collaboration is expected to depend on the nature of the joint actions we 

consider, but also on the kind of performance we want to improve. 

 

In the present study, we will consider that the improvement of the performance has to be 

understood as an increase of the sole dynamical stability of the organization, i.e. its ability to 

withstand small perturbations and to recover from disturbances. This restrictive choice is 

motivated by two reasons: First, whatever the type of performance we want to improve, dynamical 

stability is always additionnaly (and most of the time implicitly) required. After all, what would 

be the usefulness a assembly line designed for a very high flux, but which never works because of 

incessant breakdowns? Second, dynamical stability is an universal quantitative criterion which 

allows a comparison between a wild variety of organizations. 
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